Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 31(3): 341-358.e7, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38402618

RESUMEN

Liver injuries often occur in a zonated manner. However, detailed regenerative responses to such zonal injuries at cellular and molecular levels remain largely elusive. By using a fate-mapping strain, Cyp2e1-DreER, to elucidate liver regeneration after acute pericentral injury, we found that pericentral regeneration is primarily compensated by the expansion of remaining pericentral hepatocytes, and secondarily by expansion of periportal hepatocytes. Employing single-cell RNA sequencing, spatial transcriptomics, immunostaining, and in vivo functional assays, we demonstrated that the upregulated expression of the mTOR/4E-BP1 axis and lactate dehydrogenase A in hepatocytes contributes to pericentral regeneration, while activation of transforming growth factor ß (TGF-ß1) signaling in the damaged area mediates fibrotic responses and inhibits hepatocyte proliferation. Inhibiting the pericentral accumulation of monocytes and monocyte-derived macrophages through an Arg-Gly-Asp (RGD) peptide-based strategy attenuates these cell-derived TGF-ß1 signalings, thus improving pericentral regeneration. Our study provides integrated and high-resolution spatiotemporal insights into the cellular and molecular basis of pericentral regeneration.


Asunto(s)
Regeneración Hepática , Factor de Crecimiento Transformador beta1 , Regeneración Hepática/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Hígado , Hepatocitos/metabolismo , Proliferación Celular
2.
Cell Death Dis ; 12(1): 35, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414472

RESUMEN

Technology of generating human epidermal derivatives with physiological relevance to in vivo epidermis is continuously investigated for improving their effects on modeling of human natural dermatological status in basic and clinical studies. Here, we report a method of robust establishment and expansion of human primary epidermal organoids (hPEOs) under a chemically defined condition. hPEOs reconstruct morphological, molecular, and functional features of human epidermis and can expand for 6 weeks. Remarkably, hPEOs are permissive for dermatophyte infections caused by Trichophyton Rubrum (T. rubrum). The T. rubrum infections on hPEOs reflect many aspects of known clinical pathological reactions and reveal that the repression on IL-1 signaling may contribute to chronic and recurrent infections with the slight inflammation caused by T. rubrum in human skin. Thus, our present study provides a new insight into the pathogenesis of T. rubrum infections and indicates that hPEOs are a potential ex vivo model for both basic studies of skin diseases and clinical studies of testing potential antifungal drugs.


Asunto(s)
Arthrodermataceae/inmunología , Dermatomicosis/inmunología , Células Epidérmicas , Organoides , Adolescente , Adulto , Células Cultivadas , Niño , Células Epidérmicas/inmunología , Células Epidérmicas/microbiología , Epidermis , Humanos , Persona de Mediana Edad , Organoides/inmunología , Organoides/microbiología , Adulto Joven
3.
Cell Res ; 29(12): 1009-1026, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31628434

RESUMEN

We report the generation of human ESC-derived, expandable hepatic organoids (hEHOs) using our newly established method with wholly defined (serum-free, feeder free) media. The hEHOs stably maintain phenotypic features of bipotential liver stem/progenitor cells that can differentiate into functional hepatocytes or cholangiocytes. The hEHOs can expand for 20 passages enabling large scale expansion to cell numbers requisite for industry or clinical programs. The cells from hEHOs display remarkable repopulation capacity in injured livers of FRG mice following transplantation, and they differentiate in vivo into mature hepatocytes. If implanted into the epididymal fat pads of immune-deficient mice, they do not generate non-hepatic lineages and have no tendency to form teratomas. We further develop a derivative model by incorporating human fetal liver mesenchymal cells (hFLMCs) into the hEHOs, referred to as hFLMC/hEHO, which can model alcoholic liver disease-associated pathophysiologic changes, including oxidative stress generation, steatosis, inflammatory mediators release and fibrosis, under ethanol treatment. Our work demonstrates that the hEHOs have considerable potential to be a novel, ex vivo pathophysiological model for studying alcoholic liver disease as well as a promising cellular source for treating human liver diseases.


Asunto(s)
Modelos Animales de Enfermedad , Hepatocitos/citología , Hepatopatías Alcohólicas/patología , Organoides , Adulto , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Feto , Células Madre Embrionarias Humanas , Humanos , Hígado , Ratones , Organoides/citología , Organoides/crecimiento & desarrollo , Quimera por Trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...